Lessons Learned from IROC Houston Audits

David Followill 2016 AAPM Summer Meeting August 3, 2016

Mission

- Assure NCI and cooperative groups that institutions participating in clinical trials deliver prescribed doses that are comparable and consistent. (Minimize dose uncertainty)
- Help institutions to make any corrections that might be needed.
- 3. Report findings to the community.

IROC QA Program (2015)

IROC-H Verification of Delivery of Tumor Dose

Reference calibration (NIST traceable)

Correction Factors:
Field size & shape
Depth of target
Transmission factors
Treatment time

Tumor Dose

Evaluated by IROC phantoms

Global Leaders in Clinical Trial Quality Assurance

On-Site Dosimetry Review Audit

TG-51 Addendum

Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams

Malcolm McEwen^{a)}
National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada

- Defines reference class chambers (V≥0.05cm³)
 performance (Table III)
- Includes new chamber models
- New radial beam profile correction (FFF beams)
- Provides clarity but also reaffirms the recommendations of TG-51

Ion Chambers - Photons

- ADCL calibrated 0.6 cm³
 - Smaller volume chambers (> 0.05 cm³) okay if traceable to another 0.6 cm³ and meets requirements of Table III in addendum
 - NO parallel plate chambers
 - Waterproof (Go ahead and get one)
 - Most common: Exradin A12, PTW 30013
 - Non waterproof needs a 1mm PMMA sleeve that does not leak!

Ion Chambers - Electrons

- Parallel-plate or cylindrical chambers okay
 - Cylindrical for energies > 6 MeV per protocol ($R_{50} \ge 2.6$ cm)
 - Cylindrical = parallel plate if care in placement

	P11	PTW Roos	Welhoffer Roos	Marcus
5	1.008 (n=1)			
6	1.002 ± 0.1% (n=3)	1.000 (n=1)	0.996 ± 0.3% (n=2)	1.002 (n=1)
7	1.009 (n=1)			
8	1.006 (n=1)			
9	1.003 ± 0.1%(n=2)	0.998 (n=1)	0.996 (n=1)	1.000 (n=1)
12	1.000 ± 0.1%(n=3)	0.997 ± 0.2% (n=2)	0.996 (n=1)	1.004 ± 0.1% (n=3)
16	1.003 ± 0.2%(n=3)	0.998 ± 0.2 % (n=2)	1.001 ± 0.0% (n=2)	1.001 ± 0.2% (n=2)
20	1.000 ± 0.1%(n=4)	1.000 (n=1)	1.000 ± 0.1% (n=2)	1.000 (n=1)

Always use a parallel plate chamber for 4 MeV beams
 Caution as to where the inside surface of the front window is located

Ion Chambers - Electrons

- All chambers must have an ADCL calibration coefficient EXCEPT PARALLEL PLATE CHAMBERS
 - AAPM recommendation is to cross calibrate parallel plate chamber with cylindrical chamber in a high energy electron beam (worksheet C a la TG-39)
 - ADCL $N_{D,w}$ good $TG-51 k_{ecal}$ bad
 - Use of (N_{D.w}•k_{ecal}) results in an error of 1-2%
 - ONE EXCEPTION Exradin P11 seems to be okay
 - FUTURE: TG-51electron addendum new k_{ecal} values

Measurement Techniques

- Accurate placement of cylindrical ion chamber at depth (<0.1 mm)
 - Whether manual or electronic motor driven there must be a starting reference point

Two techniques

1. Surface method

Measurement Techniques

2. "Cowboy" method

ruler down minimize surface area

U-shape plastic attached flush with end of ruler

- Accuracy depends on cutting ruler
- Used for reference starting point
- Periodic check of depth

Ion chamber

Cut Tuler by the chamber radius d wall thickness

Jal Leaders in Clinical Trial Quality Assurance

Measurement Techniques

- Parallel plate ion chambers
 - 1. Flat surface makes it easy to measure depth
 - 2. Accurate ruler needed
 - Must know where the inside surface of the front window is located

Spokas Parallel Plate Chamber Model A11, P11 or T11

Collecting Volume: 0.6 cc Nominal Calibration Factor: 5.5 R/nC (TG-21) Nominal Calibration Factor: 48.3 Gy/µC (Air Kerma) Centroid of Collecting Volume: 2.0 mm from window

sunace

Collector Diameter: 20.0 mm Window-Collector Gap: 2.0 mm Window Thickness: 1.0 mm

Window, Collector and Guard Material:

A11 – C552 Shonka air-equivalent plastic P11 – D400 polystyrene-equivalent plastic.

Stem: 1
cm long:
Waterpr
Venting
body and
inside tu
Buildup
chamber

Effective Point of Measurement and Beam Quality

Photons

Electrons

10 cm

calibration depth

"point of measurement" is the center electrode of a cylindrical chamber and the front window of a parallel plate chamber

 $%dd(10)_{x}$ beam quality

 R_{50}

Beam quality should always be measured using the "effective point of measurement"

 $0.6r_{cav}$

shift to effective point

 $0.5r_{cav}$

100 cm

beam quality SSD

100 cm

10 x 10 cm²

field size \geq 10 x 10 cm²

Cylindrical

Parallel plate

Clinical Trial Quality Assurance

Beam Quality Conversion Factors

Beam

1.03

Electror

1.02

- Good by the original of the papers

$$M = P_{ion} \bullet P_{TP} \bullet P_{elec} \bullet P_{pol} \bullet M_{raw}$$

- P_{TP} correction factor
 - Mercury thermometers and barometers most accurate (but they are no longer kosher)
 - Hg barometers T&G corrections needed
 - Quality aneroid or digital can be used
 - Check annually against a standard
 - Digital purchased with a calibration does not mean accurate but rather what it read at certain pressures or temperatures

- P_{elec} correction factor
 - ADCL calibration for each scale needed
- P_{pol} correction factor
 - Change polarity requires irradiation (600 to 800 cGy) to re-equilibrate chamber
 - Use of eq 9 in TG-51 requires that you preserve the sign of the reading or

$$P_{pol} = \frac{\left| M_{raw}^+ \right| + \left| M_{raw}^- \right|}{2 \left| M_{raw}^- \right|}$$

 P_{pol} should be near unity for cylindrical chambers and slightly larger correction for parallel plate chambers

urance

- Electron beam gradient (Pgr) correction factor
 - No correction for photon beams since correction included in k_Q
 - Only for cylindrical ion chambers
 - Ratio of readings at two depths

$$P_{gr} = \frac{M(d_{ref} + 0.5r_{cav})}{M_{raw}(d_{ref})}$$

– The reading at d_{ref} +0.5 r_{cav} should have the same precision as the reading at d_{ref} since:

Dose = M(
$$d_{ref}$$
) • (many factors) • M(d_{ref} +0.5 r_{cav})

M(d_{ref})

- Electron beam gradient (P_{gr}) correction factor
 - E < 12 MeV; typically $P_{gr} > 1.000$
 - E ≥ 12 MeV; typically $P_{gr} \le 1.000$
 - Why? Because for low electron energies $d_{ref} = d_{max}$ and this places the eff. pt. of measurement in the buildup region thus a ratio of readings greater than 1.000.
 - At higher electron energies d_{ref} is greater than d_{max} and as such the eff. Pt. of measurement is on the descending portion of the depth dose curve thus a ratio of readings less than 1.000.

Clinical Depth Dose

- Always measure using the effective point of measurement
 - Re-measurement not suggested for existing Linacs, but TG-51 came out in 1999. New Linacs should incorporate shift
- Always use the clinical depth dose (value TPS calculates) to make the correction from the calibration depth (10 cm) to the reference depth (d_{max})
 - Calibration now consistent with TPS dose calculation

Clinical Depth Dose

- For photons do not use the beam quality value %dd(10)_x to take dose from 10 cm to d_{max}
- For electrons depth dose correction for ≥15/16 MeV is significant (~98.5% - 16 MeV and ~95.5% - 20 MeV)
 - Caution!!! Super big problem if you use % depth ionization data (3-5% error for high energy electron beams)

MLC QA a la TG-142

TABLE V. Multileaf collimation (with differentiation of IMRT vs non-IMRT machines).

Procedure		Tolerance
	Weekly (IMRT machines)	
Qualitative test (i.e., matched segments, aka "picket fence")		Visual inspection for discernable deviations such as ar increase in interleaf transmission
	Monthly	
Setting vs radiation field for two patterns (non-IMRT)		2 mm
Backup diaphragm settings (Elekta only)		2 mm
Travel speed (IMRT)		Loss of leaf speed >0.5 cm/s
Leaf position accuracy (IMRT)		1 mm for leaf positions of an IMRT field for four cardinal gantry angles. (<i>Picket fence</i> test may be used test depends on clinical planning-segment size)
	Annually	
MLC transmission (average of leaf and interleaf transmission), all energies		$\pm 0.5\%$ from baseline
Leaf position repeatability		±1.0 mm
MLC spoke shot		≤1.0 mm radius
Coincidence of light field and x-ray field (all energies)		±2.0 mm
Segmental IMRT (step and shoot) test		<0.35 cm max. error RMS, 95% of error counts <0.35 cm
Moving window IMRT (four cardinal gantry angles)		<0.35 cm max. error RMS, 95% of error counts <0.35 cm

It's all about leaf position accuracy!

Measurement vs. Monte Carlo

Criteria 3%/2 mm

Heterogeneity Corrections

Lung: TLD dose vs TPS calc

Lung: TLD dose vs TPS calc

Lung: TLD dose vs TPS calc

TLD Dose Findings

- Measured doses systematically lower than calculated doses for C/S AAA algorithms (p<0.0001)
- No significant difference between C/S AAA algorithms

Small Field Dosimetry What is the truth?

Help is on the way!

Joint AAPM/IAEA **Small Field Dosimetry** CoP will be published soon.

Small Field Dosimetry Volume Averaging Correction

G. Azangwe, Med Phys. 41 (7) 2014

Small Field Dosimetry Fluence Corrections

Situation is even worse if you consider using field sizes less then 0.5 x 0.5 cm²

 $k_{Coim}^{folin}f_{10x10}$

Francescon et al 2011 data

Proton Therapy

Human tissue: equal in the eyes of both photons and protons

Tissue Substitutes: There's discrimination, as they <u>are not equal</u> in the eyes of photons and protons

Stopping Power vs. HU Curve

Not so good.....

Stopping Power vs. HU Curve

Summary

- TG-51 Implementation is straightforward
 - Must read the protocol and follow the prescriptive steps
 - Many suggestions to clarify confusion have been made
- MLC QA is critical
- Heterogeneity correction algorithms are not all the same
- Small field dosimetry requires extra attention
- Proton tissue substitutes are unique
- IROC Houston QA Center is always available for assistance. Give us a call if you have questions.

